23 December 2020

Modern physics built on quicksand?

The title of this post will provoke its immediate dismissal as mere polemic. Be that as it may. Let me continue. University physics departments have been increasingly renamed today as Departments of Physics and Astronomy. This signals a significant shift in the focus of physics since the 19th century, when mechanics and electromagnetic dynamics were at the centre of attention, to cosmology. This cosmology requires not only the use of huge telescopes of all kinds: ocular, radio, electromagnetic and even gravitational, as well as so-called particle colliders such as the LHC in Geneva, but also the application of ever more complex theories, starting with Einsteinian special relativity and general relativity, and even quantum dynamics requiring ever more complex mathematics. As a conservative estimate, a very able student coming from a school with competent maths and science teachers will need at least four years in an undergraduate physics degree plus four years of postgraduate work in physics to learn the mathematical foundations of advanced relativity physics and quantum dynamics. This is a prerequisite for getting comfortable with the complexities of these highly sophisticated mathematized theories of physics. These entrance barriers make of physicists working at the frontiers of modern physics a kind of small, exclusive, intellectual elite that can communicate in an unfiltered way only amongst itself. 

Physicists are therefore proud of having acquired the mathematical background to even understand modern physics. This pride spills over often enough into arrogance and smugness. After all, they are supposed to be the modern keepers of the keys to the secrets of the universe. The many popularizations of modern physics give a rough idea of some of the enigmas of modern physics such as quantum indeterminacy and space-time curvature, but it remains a rough idea that readers cannot seriously deploy in any confidently critical fashion. These critics would be ruled out of bounds, outside their area of competency, by the initiated physicists themselves. 

One could say, this is all to the good, because the physicists oversee their own work internally and mutually criticize it in prestigious peer-reviewed journals. Hence physicists put their reputation on the line if they try to publish nonsense that is either theoretically inconsistent or empirically unverifiable or both. Rigorous internal controls are then said to guarantee falsifiable scientific 'truth'. Scientific endeavour in physics is thus in the hands of competent experts in the best of all possible scientific worlds, even if the rest of us can't follow in detail what they're up to.

But isn't there something fishy going on here? Doesn't the scientific elite of physicists, along with their renowned journals, share a set of pre-given rules for critically judging the worth of scientific discovery? One can often read from physicists themselves that their science's foundations consist of mathematical theories that are treated first as merely hypothetical theoretical models, but that these models then have to be tested and verified by finding the appropriate empirical data to test the model. If the model can account for, that is, explain, the empirical facts given by the data, then it has been verified, at least for now, until new, unexpected empirical facts come along with which the existing model cannot cope. The truth of such mathematical physical models amounts to the correctness in corresponding to the given empirical facts. These empirical facts, in turn, invariably concern movement that the theoretical model needs to accurately predict to prove its mettle as a scientific theory. Hence truth is really only the correct correspondence between model and empirical data relating to movement and change. More succinctly: truth is correctness, and not the unconcealment of the phenomena themselves. Since movement and change are the focus of concern for scientific prediction, the simple phenomena themselves are conceptualized by one-line definitions as a preliminary to moving on to where the action is, namely, the movement of the physical entities concerned. In predicting motion, physics fulfils its raison d'être of usefulness for the mastery of physical motion either in the mind or practically. Empiricism and pragmatism in philosophy and scientific methodology may be regarded as synonyms, and the one is as naïvely dogmatic as the other with respect to its own ontological foundations.

Modern scientific method is ruled by the necessity of testing the validity of hypothetical theoretical models against the experimental data concerning movement and change given by the physical phenomena. Such a procedure is the hallmark of all modern science, which is thoroughly empiricist in nature because it is convinced that theories can be confirmed or confuted by comparing them with empirical data in a circular fashion that, from the outset, rules out questioning the validity of the simple a priori assumptions that already pre-form how the phenomena of concerned are accessed and grasped at all by the scientific mind. This amounts to saying that all modern science is thoroughly clueless as to its own respective ontological foundations, physics no less than economics, biology no less than sociology. It guarantees its own blindness by adhering unquestioningly to an empiricist methodology and epistemology: if the model explains the quantitative empirical facts predictively, it must be true, at least for now (cf. Popperian falsifiability). The implicit ontology of all modern science, including physics, is as naïve and simple-minded as this.

Witness, for instance, the testimony of a sophisticated physicist who has written a very good text book on relativity theory:

"A physical theory, in fact, is a man-made amalgam of concepts, definitions, and laws, constituting a mathematical model for a certain part of nature. It asserts not so much what nature is, but rather what it is like. Agreement with experiment is the most obvious requirement for the usefulness of such a theory. However, no amount of experimental agreement can ever ‘prove’ a theory, partly because no experiment (unless it involves counting only) can ever be infinitely accurate, and partly because we can evidently not test all relevant instances." (Wolfgang Rindler Relativity: Special, General and Cosmological 2nd ed. O.U.P. 2006 p.33)

What is the above-mentioned unconcealment of the phenomena themselves supposed to be, you ask. The phenomena themselves in their revealing themselves of themselves must be hindered, if at all, by the assumed hypotheses of the mathematical physical models. These hypotheses, or underlying postulates must, from the outset (a priori), obscure and distort the view provided by the models based on them. To the present day, physics lavishly praises itself for its mathematization that took off in earnest at the beginning of the 17th century with major contemporaneous figures such as Kepler and Galileo. Galileo is even the author of the leading line of the era's playbook when he pronounces that the laws of nature are written in the language of mathematics. Descartes fills this out to a full-blown script for the modern scientific age in his De Regulae or Rules. This postulation of a mathematized mode of accessing the phenomena of nature is itself not evidence-based, but posited as an (allegedly obvious) axiom entirely for the sake of gaining a purely quantitative, precalculative, predictive power of knowledge over physical motion in a unified way through simple mathematizable laws of motion, namely, Newton's.

To precalculate physical (loco)motion, Newton's laws require the mathematical operation of infinitesimal differentiation with respect to the continuous, real, time variable, t. Without this variable, it cannot even start business. Armed with this assumed 'obvious' mathematization of time, physics was off to the races with unprecedented success, that is, until it hit a road block at the end of the 19th century. Whereas for Newtonian physics, time t was an absolute variable, anomalies in the theory of electromagnetic radiation coupled with the paradoxes of the absoluteness of the movement of electromagnetic radiation (light) in a vacuum in turn forced a relativization of time itself. With Einsteinian relativity, the human being, that is, the scientific observer-subject, was cast as the receiver of electromagnetic signals bearing empirical data at a certain clock-time that the observer-subject registered on his or her clock in the pertinent inertial reference frame. Voilà! Time t had been relativized to the time registered by receipt of an electromagnetic (light) signal in a given frame of reference. 

It had also been spatialized as the path taken by the light bearing the physical information from some event or other in the universe. Such events were of interest especially with a view to calculating the motion of cosmological entities, starting with planets and stars. This spatialized time was tied to the usual three-dimensional spatial co-ordinates by mathematical constraints known as the Lorentz transformation, which resulted in the time of a physical event registered by the clock in one frame being compressed or dilated compared to the time registered by the clock in another frame. Four-dimensional space-time (x,y,z,t) was born with time t becoming the fourth dimension as a continuous, real, linear variable with respect to which equations of motion could still be differentiated. 

The extension of special relativity, in which light moves invariably in a straight line at the absolute speed of light, c, to considering the curvature of the path of light necessitated that the ties between the spatial co-ordinates and the linear time co-ordinate had to be adjusted to account for the curvature of light's path that bore the signal data determining time, t. Hence a curved space-time had to be postulated whose treatment demanded a curved geometry known as differential geometry initially developed by the German mathematician, Bernhard Riemann, who introduced Riemann tensors to cope mathematically with curvature. The focus of theoretical interest remained, of course, the quantities involved and their variation, which could still be captured by (partial and ultimately covariant) differentiation. The phenomena of space and time themselves were taken for granted as self-evident to physical common sense. Only their mathematization was mysterious. For how could space-time be curved?!

Even with the advent of quantum mechanics, whose quantization was forced on physics by anomalies in the theory of electromagnetic radiation, i.e. again: of light, whereupon light (now conceived as nuggets of pure energy, i.e. as absolute, pure, massless movement) could now only be emitted in discrete Planck quanta rather than continuously. This quantization of light in photons led in the 1920s, with Heisenberg and Schrödinger, to the invention of the device of quantum indeterminacy. The motion of sub-atomic particles could no longer be uniquely causally determined, but had only a probability distribution. However, no attempt was made to break with the mathematization of time as a continuous, real, and hence differentiable variable measuring physical movement. The reason is simple: since its inception with Aristotle and his predecessors, physics has always been about investigating the movement of all that is movable, changeable (_kinoumena_). That is the definition of physics: the science of movement, whereby with Aristotle at least, this movement comprised not only locomotion (change of place), but also change of quality, change of quantity and change of entity itself (propagation). Modern mathematized physics started with the simplest kind of movement, namely (loco)motion, that was most amenable to mathematization. To the present day, physics hangs on for dear life to continuous, real, linear, differentiable time, even though the mathematical operation of differentiation itself becomes increasingly round-about, culminating in the covariant differentiation applicable to general relativity theory.

Convenience for the sake of mathematization, however, can hardly be the criterion for choosing a conception of time. (Linear equations in maths are easy to work with; non-linear equations make things complicated.) Nor is it beyond question that time as a phenomenon in its own right is merely derivative of phenomena of movement and motion. A continuous, real variable t is still basically only a counted time counted off one kind of movement or other. This circumstance, in turn, is dictated by physics' undivertible interest in predicting movement, thus gaining calculative power over it. Is the decision regarding the conceptualization of a phenomenon as fundamental and elementary as time to be dictated by the will to power over movement? What if it were instead the case more fitting the truth of phenomena of movement that it is time — now as three-dimensional time — which enables all kinds of movement to be conceived and understood by us humans as movement in the first place? For a modern physicist, such considerations are totally out of bounds because it is a recipe for declaring a modesty with respect to the knowledge claims of physics, instead of puffing oneself up as one who is investigating the deepest truths of the universe and where 'we' supposedly 'came from'. As it turns out, such alleged deep truth amounts to only the correctness of factual observation under certain restrictive assumptions concerning how the phenomena of concern are accessed and conceived. In particular, the violence done to the phenomenon of time ultimately does violence to our very conception of ourselves as human beings. 

We have thus been caught in the inexorable progress of linear time in one dimension as what-beings that (not who) are themselves one-dimensional. We are, however, if we open the question of time, beings exposed to the openness of three-dimensional time that enables our freedom of movement. Without a proper conception of three-dimensional time there can be no well-founded conception of human freedom. By contrast, modern physics is built on ontological quicksand and must be unfrocked as obscuring the view of the phenomena themselves through unbridled mathematization for the sake of its self-aggrandizement.

Further reading: Movement and Time in the Cyberworld

06 December 2020

Zu Albrechts "Der Geldbegriff zwischen Hermeneutik und Phänomenologie"

Sascha Erich Albrecht hat 2018 eine Dissertation mit dem Titel Der Geldbegriff zwischen Hermeneutik und Phänomenologie: Eine kritische Auseinandersetzung mit der Moderne zwischen Martin Heidegger, Alfred Sohn-Rethel und Hannah Arendt eingereicht. Der Autor setzt sich kurz mit einer früheren (2000) Arbeit von mir, Kapital und Technik: Marx und Heidegger, auseinander. (Die neueste Fassung dieses Buches ist von 2015.) Das Hauptanliegen meiner Abhandlung ist es, den grundlegenden Unterschied zwischen dem von Heidegger artikulierten Wesen der Technik (dem sog. "Gestell") und dem Wesen des Kapitals herauszuarbeiten, das ich  — von einer gewissen phänomenologischen Auslegung der berühmten Marxschen Wertformanalyse ausgehend — als das "Gewinnst" in der früheren Arbeit bzw. als das "Gewinnspiel" in der 2015 Ausgabe begreife. Albrecht lehnt diesen kritischen Ansatz ab. Er schreibt dementsprechend gegen Schluß seiner Arbeit:

"Die vorliegende Untersuchung [die Dissertation] legt jedoch nahe, die Entfremdung im Marxismus nach Sohn-Rethel und Heidegger im Wesentlichen als deckungsgleich auszulegen. Dies ermöglicht erst das Zusammenfügen des Marxschen und Heideggerschen Denkens mit Hinblick auf das Geld als Erkenntnisleistung. Da Eldred im Zuge seiner Grundannahme der Unvereinbarkeit der Entfremdung bei Heidegger und Marx dieser Weg versperrt bleibt, sieht er das Geld als Mittel, durch das der Mensch erst die Dinge in einem berechnenden Horizont wahrnimmt. Deutlich wurde jedoch an obiger Stelle, dass die Annahme, das Geld selbst sei der Ursprung der Herausforderung an den Menschen, verkürzt ist. Ausgehend von der Gleichursprünglichkeit von Geld und modernem wissenschaftlichen Denken ist das Geld vielmehr ein Indikator dafür, dass die Herausforderung an den Menschen schon ergangen ist." (S.180f)

Zunächst einmal: Es handelt sich nicht um irgendeine "Grundannahme", sondern um die Hermeneutik von gewissen Phänomenen. Keineswegs will ich behaupten, daß das Geld "erst die Dinge in einem berechnenden Horizont" erscheinen läßt.  "Berechnung" hat zwei grundverschiedene Bedeutungen in zwei wesensverschiedenen phänomenologischen Bewegungsontologien, die ich hier kurz erläutern möchte (siehe aber die vertiefende Lektüre unten).

Deshalb grundsätzlicher: Ich wollte und will gerade diesen Weg zu einer Zusammenfügung des Marxschen und Heideggerschen Denkens versperren! Denn es liegen hier zwei wesentlich unterschiedliche, einfache Paradigmen vor, nämlich: das Paradigma der produktiven, herstellenden Bewegung einerseits und das der Austauschbewegung andererseits. Diese beiden Bewegungsarten haben wesensunterschiedliche Ontologien. Heidegger richtet sein Augenmerk ausschließlich auf das Paradigma der _technae poiaetikae_, das Aristoteles für seine Ontologie der produktiven Bewegung verwendet. Diese Bewegungsontologie behält ihre totalisierende Vorherrschaft über das Denken bis heute. Heideggers kritischer Wesensbegriff der Technik zielt darauf, die geschichtliche Vollendung und Totalisierung der wissenden, berechnenden Herstellung in der heutigen Welt auf den Begriff zu bringen.  Für ihn sowie für die meisten seiner Leser sind _technae poiaetikae_ und _technae_ gleichbedeutend. Damit unterschlägt er stets, daß die Griechen viele verschiedenen _technai_ außer der _technae poiaetikae_ (die produktive, machende, herstellende Kunst wie z.B. das Tischlerhandwerk) — insbesondere die der _technae chraematistikae_, d.h. der geldmachenden Kunst — nicht nur kannten, sondern auch in philosophischen Schriften (vor allem Platons) thematisierten. Mit der _technae chraematistikae_ kommt das Paradigma des Austausches (_metabolae_ in einer seiner zwei grundlegenden Bedeutungen), nämlich des Warenaustausches, als einer nicht-produktiven Bewegungsart ins Spiel. Dieses Austauschspiel auf dem Markt wird im 5. Buch der Nikomachischen Ethik unter der Rubrik "Austauschgerechtigkeit" abgehandelt, und es ist gerade diese Aristotelische Abhandlung, die Marx als eine der Aristotelischen Quellen zur Ausarbeitung seiner Wertformanalyse dient.

Das Warentauschspiel auf dem Markt kann als elementares Paradigma für die Vergesellschaftung der Menschen gelten, wohl gemerkt: eine dinglich vermittelte Vergesellschaftung, deren geschichtliche Entfaltung wir heute in der vollen Blüte des globalen Kapitalismus erfahren. Weder Heidegger noch Aristoteles noch Marx haben die Ontologie des Austauschspiels ausgearbeitet, die ich mit dem Begriff des Gewinnspiels fasse, sofern es wertdinglich vermittelt ist. Das vergesellschaftende Wechselspiel unter den Menschen muß aber nicht wertdinglich vermittelt sein. In diesem Fall rede ich vom "mutually estimative interplay", d.h. vom gegenseitig ein- und wertschätzenden Wechselspiel.

Das gegenseitige Wechselspiel des Wertschätzens und vor allem seine eigentümliche Bewegungontologie als Interplay wird grundsätzlich weder von Heidegger noch von der modernen Wirtschaftswissenschaft gesehen, denn sie bleiben jeweils dem Paradigma und der Ontologie der produktiven, herstellenden Bewegung verhaftet bzw. verpflichtet. Deshalb kann z.B. der Markt in der heutigen Wirtschaftswissenschaft als bloßer "Mechanismus" der effizienten Ressourcenverteilung (miß)verstanden werden, was Albrecht affirmativ zitiert, weil sein Ansatz unwissentlich darin besteht, die wesensverschiedenen Bewegungsontologien zu nivellieren. So übernimmt er kritiklos eine weitverbreitete Selbstdefinition der Wirtschaftswissenschaft, "wonach Wirtschaft der Ausschnitt menschlichen Handelns ist, der in Verfügung über knappe Mittel zur Erfüllung menschlicher Bedürfnisse besteht" (S.181). Diese Definition ist gerade dadurch motiviert, daß die Wirtschaftswissenschaft von Anfang an immer schon auf den Erfolg der Naturwissenschaft geschielt und sich bemüht hat, sich möglichst an das Paradigma und die Ontologie der produktiven, effizienten Bewegung anzupassen, wobei sie allerdings auf die Hilfe von "speziellen mathematisch-statistischen Verfahren" (S.182) angewiesen ist, da eindeutige wirkkausale Beziehungen wie etwa in der Newtonschen Mechanik fehlen. Damit aber wird das Phänomen und die Ontologie des gegenseitig wertschätzenden Wechselspiels und seiner Vermittlung durch den verdinglichten Wert nicht nur unsichtbar, sondern auch unterdrückt. Auf diese Weise tut die Wirtschaftswissenschaft den Phänomenen mutwillig Gewalt an, um dem Paradigma der herstellenden Bewegung treu zu bleiben und ihre Wissensmacht sowie ihren Status als Wissenschaft aufrechtzuerhalten. 

Dem Schein der Wissenschaftlichkeit der Wirtschaftswissenschaft wird dadurch Vorschub geleistet, daß das Medium des verdinglichten Werts, in dem das Gewinnspiel des Kapitalismus gespielt wird, das wertschätzende Wechselspiel unter den Menschen selbst und mit der Natur verschleiert. Stattdessen werden die Wertdinge selbst fetischisiert, sie scheinen, an sich Wert zu besitzen. Deshalb erscheint die Welt des Gewinnspiels im verdinglichten Wertspiegel verkehrt. Die Fehldeutung elementarer Phänomene macht blind und hat verheerende Folgen für die Menschen sowie für die Erde. 

Im  wertdinglich vermittelten Gewinnspiel des Kapitalismus wird der Mensch zum Spieler und verliert seine neuzeitliche Wesensbestimmung als Subjekt, das der Bewegung der Welt zugrunde liegen soll. Die Setzung dieses Sollen ist ein vergebliches normatives bzw. ethisches Unterfangen in unserer heutigen Welt. Vielmehr ist das gegenseitig sich einschätzende, wertschätzende Wechselspiel unter den Menschen immer ein Kräftespiel (power play), — ob wertdinglich vermittelt oder nicht, und ob es füreinander, miteinander oder gegeneinander gespielt wird. Alle Ethik gründet damit in solchem wertschätzenden Kräftespiel, in dem Werte im weitesten Sinn auf dem Spiel stehen. Die Ethik erlangt so ihre ontologische Fundierung dadurch, daß die eigentümliche vergesellschaftende Bewegungsart des gegenseitig wertschätzenden Wechselspiels auf den Begriff gebracht wird.

Vertiefende Lektüre: Kapital und Technik: Marx und Heidegger (2015)

 Social Ontology of Whoness